Class VIII Session 2023-24 Subject - Maths Sample Question Paper - 9

Time Allowed: 3 hours Maximum Marks: 80

Section A

1. $\frac{-7}{5} + \left(\frac{2}{-11} + \frac{-13}{25}\right) = \left(\frac{-7}{5} + \frac{2}{-11}\right) + \frac{-13}{25}$ [1]

This property is

a) identity

b) closure

c) associative

d) commutative

2. Sum of two rational numbers is a ______.

[1]

a) positive number

b) negative number

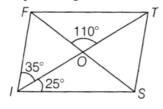
c) irrational number

d) rational number

3. If an angle of a parallelogram is two-third of its adjacent angle, the smallest angle of the parallelogram is

[1]

a) 108°


b) 54°

c) 81°

d) 72°

4. In parallelogram FIST, the value of ∠OST is

[1]

a) 80°

b) 72°

c) 75°

d) 70°

5. Two coins are tossed simultaneously. What is the probability of getting one head and one tail?

[1]

a) $\frac{1}{2}$

b) $\frac{1}{4}$

c) $\frac{2}{3}$

d) $\frac{3}{4}$

6. The product of two numbers is 1936. If one number is 4 times the other, the numbers are

[1]

a) 16, 121

b) 22, 88

c) 44, 44

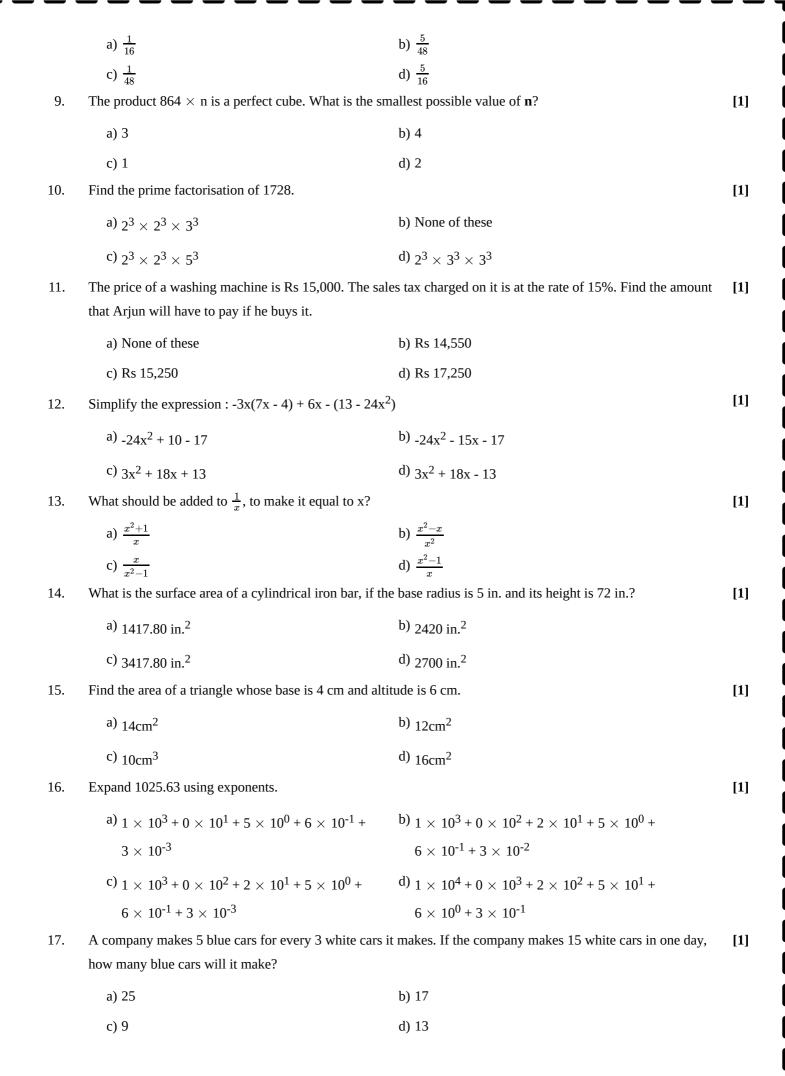
d) 20, 24

7. the value of $\sqrt{\frac{0.16}{0.4}}$ is

[1]

a) 0.2

b) 0.63


c) None of these

d) 0.02

8. The value of $\left(\sqrt{\frac{225}{729}} - \sqrt{\frac{25}{144}}\right) \div \sqrt{\frac{16}{81}}$ is

[1]

Page 1 of 13

Page 2 of 13

Factorise: $169a^2 - 144b^2$ 18.

a) (13a + 12b)

b) (13a - 12b)

c) None of these

d) (13a + 12b) (13a - 12b)

Section B

19. **Assertion (A):** The edge of the cube whose total surface area is 26.46 sq.m, is 2.1m. [1]

[1]

Reason (R): The total surface area of cube having side a is $6a^2$.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

d) A is false but R is true.

Assertion (A): The reciprocal of $(\frac{-1}{3})^{-2}$ is 3^{-2} . 20.

[1]

[2]

Reason (R): A fractional exponent of the form $\frac{1}{n}$ means to take nth root.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

d) A is false but R is true.

Section C

Solve: 0.25 (4x - 5) = 0.75x + 821.

- [2]
- 22. Shoes of the following brands are sold in November 2007 at a shoe store. Construct a pie chart for the given data.

Brand	Number of pairs of shoes sold	
A	130	
В	120	
С	90	
D	40	
E	20	

Simplify 3x(4x-5) + 3 and find its values for 23.

i.
$$x = 3$$

ii.
$$x = \frac{1}{2}$$

Express the product of 3.2×10^6 and 4.1×10^{-1} in the standard form. 24.

[2]

[2]

- 25. In a camp, there is enough flour for 300 persons for 42 days. How long will the flour last, if 20 more persons join the camp?

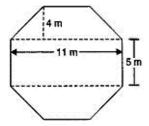
[2]

- Factorise the expression and divide it as directed: $(x^4 16) \div x^3 + 2x^2 + 4x + 8$. 26.
- [2]
- Let a, b, c be the three rational numbers where $a = \frac{2}{3}$, $b = \frac{4}{5}$ and $c = \frac{-5}{6}$ then verify that $a \times (b \times c) = (a \times b)$ 27. [3] × c (Associative property of multiplication)
- 28. Solve: $5x - 2(2x - 7) = 2(3x - 1) + \frac{7}{2}$

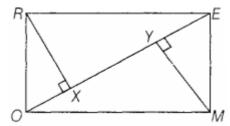
[3]

[3]

The rectangle represents the blocks played by children. Based on this answer the following questions: 29.


What is the probability that a block drawn at random will be

- a. blue?
- b. yellow?
- c. red?
- 30. Find a Pythagorean triplet in which one member is 12.


- [3]
- 31. Is 53240 a perfect cube? If not, then by which smallest natural number should 53240 be divided so that the quotient is a perfect cube?
- [3]
- 32. An article was purchased for ₹1239 including GST of 18%. Find the price of the article before GST was added. [3]
- 33. Subtract: 3a(a + b + c) - 2b(a - b + c) from 4c(-a + b + c).

- [3]
- 34. Top surface of a raised platform is in the shape of a regular octagon as shown in the figure. Find the area of the octagonal surface.

35. A rectangle MORE is shown below. [4]

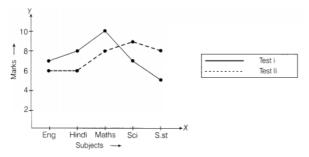
- Answer the following questions by giving an appropriate reason.
 - i. Is RE = OM
- ii. Is \angle MYO = \angle RXE?
- iii. Is \angle MOY = \angle REX?
- iv. Is \triangle MYO $\cong \triangle$ RXE?
- v. Is MY = RX?
- 36. Given, principal = ₹40000, rate of interest = 8% per annum compounded annually. Find

[4]

- i. Interest if period is one year.
- ii. Principal for Ilnd year.
- iii. Interest for Ilnd year.

37.

- iv. Amount if period is two year.
- [4] The radius and height of cylinder are in the ratio of 3:2 and its volume is 19,404 cm³. Find the radius and height.
- A photograph of a bacteria enlarged 50000 times attains a length of 5 cm as shown in the diagram. What is the 38. actual length of the bacteria? If the photograph is enlarged 20000 times only, what be its enlarged length?
- [4]



Factorize $36x^2 - 12x + 1 - 25y^2$. 39.

[4] [4]

40. The graph given below shows the marks obtained out of 10 by Sonia in two different tests. Study the graph and answer the questions that follow.

Page 4 of 13

- a. What information is represented by the axes?
- b. In which subject did she score the highest in Test I?
- c. In which subject did she score the least in Test II?
- d. In which subject did she score the same marks in both the Tests?
- e. What are the marks scored by her in English in Test II?
- f. In which test was the performance better?
- g. In which subject and which test did she score full marks?

Solution

Section A

1.

(c) associative

Explanation: Since, $a + \{b + c\} = (a + b) + c$ is associative property.

2.

(d) rational number

Explanation: Sum of two rational numbers is a rational number.

For, exampe,
$$\frac{2}{3} + \frac{4}{3} = \frac{6}{3}$$

3.

(d) 72°

Explanation: Let one angle of a parallelogram be x^0 Let the other angle of parallelogram be $\frac{2x^0}{3}$

Since sum of adjacent angles of a parallelogram is 180°

So,
$$x + \frac{2x^{\circ}}{3} = 180$$

$$\Rightarrow \frac{5x}{3} = 180^{\circ}$$

$$\Rightarrow x = 36^{\circ} \times 3^{\circ} = 108^{\circ}$$

The smallest angle of the parallelogram

$$=\frac{2}{3}x=\frac{2}{3}\times 108=72^{0}$$

4.

(c) 75°

Explanation: Given, \angle FIS = 60°

Now, \angle FTS = \angle FIS = 60° [: opposite angles of a parallelogram are equal]

Now, FT \parallel IS and TI is a transversal, therefore

$$\angle$$
FTO = \angle SIO = 25° [alternate angles]

$$\therefore$$
 \angle STO = \angle FTS - \angle FTO = 60° - 25° = 35°

Also,
$$\angle$$
FOT + \angle SOT = 180° [linear pair]

$$\Rightarrow$$
 110° + \angle SOT = 180°

$$\Rightarrow$$
 \angle SOT = 180° - 110° = 70°

In \triangle TOS, \angle TSO + \angle OTS + \angle TOS = 180° [angle sum property of triangle]

$$\therefore \angle OST = 180^{\circ} - (70^{\circ} + 35^{\circ}) = 75^{\circ}$$

5. **(a)** $\frac{1}{2}$

Explanation: Total number of outcomes = $2 \times 2 = 4$

Number of favourable outcomes = 2 [i.e. (H, T), (T, H)]

 \therefore Probability of getting one head and one tail = $\frac{2}{4} = \frac{1}{2}$

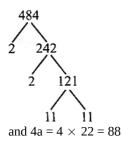
6.

(b) 22, 88

Explanation: Let one number = a

$$\Rightarrow$$
 4a \times a = 1936

$$\Rightarrow a^2 = \frac{1936}{4} = 484$$


$$\Rightarrow$$
 $a^2 = 484$

$$\Rightarrow$$
 a^{2 =} (2 × 2) × (11 × 11)

$$\Rightarrow$$
 a = 2 \times 11 = 22

Page 6 of 13

∴ Numbers are 22 and 88.

7.

(b) 0.63
Explanation:
$$\sqrt{\frac{0.16}{0.4}} = \sqrt{\frac{0.16}{0.40}} = \sqrt{\frac{16}{40}}$$

$$= \sqrt{\frac{4}{10}} = \sqrt{0.4} = 0.63$$
0.63
6 0.4000
-36
123 400
-369
34

8.

(d)
$$\frac{5}{16}$$

Explanation:
$$\left[\sqrt{\frac{225}{729}}\right] - \left[\sqrt{\frac{25}{144}}\right] \div \sqrt{\frac{16}{81}}$$

 $= \left\{\left[\sqrt{\frac{225}{729}}\right] - \left[\sqrt{\frac{25}{144}}\right]\right\} \div \frac{4}{9} = \left[\frac{15}{27} - \frac{5}{12}\right] \div \frac{4}{9}$
 $= \left[\frac{5}{9} - \frac{5}{12}\right] \div \frac{4}{9} = \left[\frac{20 - 15}{36}\right] \div \frac{4}{9}$
 $= \frac{5}{36} \div \frac{4}{9} = \frac{5}{36} \times \frac{9}{4} = \frac{5}{16}$

9.

(d) 2

Explanation: $864 \times n$ is a perfect cube.

$$864 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$$

10. **(a)**
$$2^3 \times 2^3 \times 3^3$$

Explanation:
$$1728 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$$

= $2^3 \times 2^3 \times 3^3$

11.

(d) Rs 17,250

Explanation: Price of the Washing Machine = Rs.15,000

Sale tax =
$$\frac{15000 \times 15}{100}$$

= Rs 2,250

Amount Arjun will have to pay = Rs (15,000 + 2,250)

= Rs.17,250

12.

(d)
$$3x^2 + 18x - 13$$

Page 7 of 13

Explanation:
$$-3x(7x-4) + 6x - (13 - 24x^2)$$

$$= -21x^2 + 12x + 6x - 13 + 24x^2$$

$$=3x^2 + 18x - 13$$

13.

(d)
$$\frac{x^2-1}{x}$$

Explanation: Let y should be added to $\frac{1}{x}$ to make it equal to x

$$\Rightarrow \frac{1}{x} + y = x$$

$$y = x - \frac{1}{x}$$

$$=\frac{x^2-1}{x}$$

14.

(b) 2420 in.²

Explanation: radius of cylindrical bar = 5 in. and height = 72 in.

The surface area of the cylindrical bar = $2\pi r(r+h)$

$$S=2 imes rac{22}{7} imes 5(5+72)$$

$$S = \frac{22}{7}(77)$$

$$S = \frac{22}{7} \times 77$$

$$S = \frac{16940}{7} = 2420 \text{ in.}^2$$

the surface area of cylindrical bar = 2420 in.²

15.

(b) 12cm²

Explanation: Given that, Base of the triangle = 4 cm

The altitude of the triangle = 6cm

Area of a triangle = $\frac{1}{2}$ × base × altitude

So, Area of the given triangle = $(\frac{1}{2}) \times 4 \times 6 = 12 \text{cm}^2$

16.

(b)
$$1 \times 10^3 + 0 \times 10^2 + 2 \times 10^1 + 5 \times 10^0 + 6 \times 10^{-1} + 3 \times 10^{-2}$$

Explanation: Rule of expanding for thousands, hundreds, tens, units and tenth, hundredth then multiply each digit with the exponential for of its place value & add them together.

17. **(a)** 25

Explanation: Let company makes x blue cars for 15 white cars

Blue Cars		5	x
White Ca	rs	3	15

$$\Rightarrow \frac{5}{3} = \frac{x}{15}$$
$$\Rightarrow \frac{5 \times 15}{3} = x$$
$$x = 25$$

18.

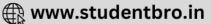
Explanation: $169a^2 - 144b^2$

$$(13a)^2 - (12b)^2$$

Section B

19. (a) Both A and R are true and R is the correct explanation of A.

Explanation: Reason explain the assertion point.


20.

(d) A is false but R is true.

Explanation: Its answer is 3^2 .

Page 8 of 13

21. Given,
$$0.25 (4x - 5) = 0.75x + 8$$

$$\Rightarrow$$
 x - 1.25 = 0.75x + 8

$$\Rightarrow$$
 x - 0.75x = 1.25 + 8 [transposing 0.75x to LHS and 1.25 to RHS]

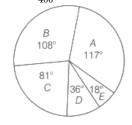
$$\Rightarrow 0.25x = 9.25$$

$$\Rightarrow \frac{0.25x}{0.25} = \frac{9.25}{0.25}$$
 [dividing both sides by 0.25]

$$\therefore x = 37$$

22. Total number of pairs of shoes sold = (130 + 120 + 90 + 40 + 20) = 400

.:. Central angle of pie chart representing the brands:


i.
$$A=rac{130}{400} imes360^\circ=117^\circ$$
 (as total central angle =360°) ii. $B=rac{120}{400} imes360^\circ=108^\circ$

ii.
$$B = \frac{120}{400} \times 360^{\circ} = 108^{\circ}$$

iii.
$$C=\frac{90}{40}\times360^\circ=81^\circ$$
 iv. $D=\frac{40}{400}\times360^\circ=36^\circ$

iv.
$$D = \frac{40}{400} \times 360^{\circ} = 36$$

v.
$$E = \frac{20}{400} \times 360^{\circ} = 18^{\circ}$$

23. We have 3x(4x - 5) + 3

simplification:
$$3x (4x - 5) + 3 = 3x (4x) - 3x(5) + 3 = 12x^2 - 15x + 3$$

i.
$$x = 3$$

Putting
$$x = 3$$
 in above equation, we get $12(3)^2 - 15(3) + 3$

$$= 12 (9) - 45 + 3$$

ii.
$$x = \frac{1}{2}$$

Putting
$$x = \frac{1}{2}$$
 in above equation, we get

$$12\left(\frac{1}{2}\right)^{2} - 15\left(\frac{1}{2}\right) + 3$$
$$= 12 \times \frac{1}{4} - \frac{15}{2} + 3$$

$$=3-\frac{15}{2}+3$$

$$=6-\frac{15}{2}$$

$$= 3 - \frac{15}{2} + 3$$

$$= 6 - \frac{15}{2}$$

$$= \frac{12 - 15}{2}$$

$$= \frac{12 - 15}{2}$$

$$= \frac{-3}{2}$$

24. Product of 3.2
$$\times$$
 10⁶ and 4.1 \times 10⁻¹ = (3.2 \times 10⁶) (4.1 \times 10⁻¹)

$$= (3.2 \times 4.1) \times 10^6 \times 10^{-1}$$

=
$$13.12 \times 10^5 = 1.312 \times 10^5 \times 10^1 [:: a^m \times a^n = a^{m+n}]$$

$$= 1.312 \times 10^6$$

25. ∵ For 300 persons flour is enough for 42 days.

 \therefore For 1 person flour will be enough for = 300 \times 42 = 12600 days

Now, 20 more persons join the camp.

So, total persons =
$$300 + 20 = 320$$

$$\therefore$$
 For 320 persons flour enough = $\frac{12600}{320} = \frac{315}{8} = 39\frac{3}{8}$ days

26. We have,
$$(x^4 - 16) \div x^3 + 2x^2 + 4x + 8$$

$$(x^4 - 16) \div x^3 + 2x^2 + 4x + 8 = \frac{x^4 - 16}{x^3 + 2x^2 + 4x + 8}$$

$$= \frac{(x^2)^2 - 4^2}{x^2(x+2) + 4(x+2)} \left[\because a^2 - b^2 = (a+b)(a-b) \right]$$

$$=\frac{(x^2+4)(x^2-4)}{(x^2+4)(x+2)}=\frac{x^2-2^2}{x+2}$$

Page 9 of 13

$$= \frac{(x+2)(x-2)}{x+2} \text{ again } [\because a^2 - b^2 = (a+b)(a-b)]$$

= x - 2

27. Taking L.H.S = a × (b × c)
=
$$\frac{2}{3}$$
 × $\left[\frac{4}{5}$ × $\left(\frac{-5}{6}\right)\right]$
= $\frac{2}{3}$ × $\left(\frac{-20}{30}\right)$
= $\frac{2}{3}$ × $\left(\frac{-2}{3}\right)$
- $\frac{2 \times (-2)}{3}$

$$= \frac{-4}{9}$$
Taking R.H.S. = $(a \times b) \times c$

$$= \left(\frac{2}{3} \times \frac{4}{5}\right) \times \frac{-5}{6}$$

$$= \frac{8}{15} \times \left(\frac{-5}{6}\right)$$

$$= \frac{-40}{90}$$

$$= \frac{-4}{9}$$

So,
$$\frac{2}{3} \times \left[\frac{4}{5} \times \left(\frac{-5}{6}\right)\right] = \left[\frac{2}{3} \times \frac{4}{5}\right] \times \left(\frac{-5}{6}\right)$$

28.
$$5x - 2(2x - 7) = 2(3x - 1) + \frac{7}{2}$$

 $5x - 4x + 14 = 6x - 2 + \frac{7}{2}$
 $x + 14 = 6x + \frac{3}{2}$

$$6x - x = 14 - \frac{3}{2}$$
$$5x = \frac{25}{3}$$

$$5x = \frac{25}{2}$$
$$x = \frac{25}{2} \times \frac{1}{5} = \frac{5}{2}$$

Therefore, the required solution is $x = \frac{5}{2}$.

29. a. $Probability = \frac{Number of jacobs}{Total number of possible outcomes}$

Number of favorable chance to get blue = 3

Total no. of outcomes
$$= 16$$

Probability=
$$\frac{3}{16} = 3/16$$

 $ext{b. } Probability = rac{Number \ of \ favourable \ outcomes}{Total \ number \ of \ possible \ outcomes}$

Number of favorable chance to get yellow = 1

Probability =
$$\frac{1}{16}$$
 = 1/16

c. $Probability = rac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ possible\ outcomes}$

Number of favorable chance to get red = 8

Probability =
$$\frac{8}{16} = \frac{1}{2}$$

30. If we take $m^2 - 1 = 12$

Then,
$$m^2 = 12 + 1 = 13$$

Then the value of m will not be an integer.

So, we try to take $m^2 + 1 = 12$. Again $m^2 = 11$ will not give an integer value for m.

So, let us take
$$2m = 12$$

then
$$m = 6$$

Thus,
$$m^2 - 1 = 36 - 1 = 35$$
 and $m^2 + 1 = 36 + 1 = 37$

Therefore, the required triplet is 12, 35, 37.

$$31.53240 = 2 \times 2 \times 2 \times 11 \times 11 \times 11 \times 5$$

The prime factor 5 does not appear in a group of three. So, 53240 is not a perfect cube. In the factorisation 5 appears only one time. If we divide the number by 5, then the prime factorisation of the quotient will not contain 5.

So,
$$53240 \div 5 = 2 \times 2 \times 2 \times 11 \times 11 \times 11$$

Hence the smallest number by which 53240 should be divided to make it a perfect cube is 5.

The perfect cube in that case is = 10648.

32. Given,

Page 10 of 13

Cost with GST included = ₹ 1239

Let cost without GST = x

So, Cost before GST + GST = Cost with GST

$$x + (\frac{18}{100} \times x) = 1239$$

$$x + \left(\frac{9x}{50}\right) = 1239$$

$$x = 1050$$

Thus, price before GST = 1050 rupees

33.
$$4c(-a+b+c) - [3a(a+b+c) - 2b(a-b+c)]$$

$$= -4ac + 4bc + 4c^2 - [3a^2 + 3ab + 3ac - 2ab + 2b^2 - 2bc]$$

$$= -4ac + 4bc + 4c^2 - [3a^2 + 2b^2 + 3ab - 2bc + 3ac - 2ab]$$

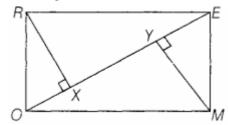
$$= -4ac + 4bc + 4c^2 - [3a^2 + 2b^2 + ab + 3ac - 2bc]$$

$$= -4ac + 4bc + 4c^2 - 3a^2 - 2b^2 - ab - 3ac + 2bc$$

$$= -3a^2 - 2b^2 + 4c^2 - ab + 4bc + 2bc - 4ac - 3ac$$

$$= -3a^2 - 2b^2 + 4c^2 - ab + 6bc - 7ac$$

34. Area of the octagonal surface


= Area of rectangular portion + 2(Area of trapezoidal portion)

$$=11 imes 5+2 imes \left[rac{(5+11) imes 4}{2}
ight]m^2$$

$$= 55 + 64 \text{ m}^2$$

$$= 119 \text{ m}^2.$$

35. A rectangle MORE is shown below:

i. Yes,
$$RE = OM$$

Given, MORE is a rectangle. Therefore, the opposite sides are equal.

ii. Yes,
$$\angle$$
MYO = \angle RXE

Here, MY and RX are perpendicular to OE.

Since,
$$\angle RXO = 90^{\circ} \Rightarrow \angle RXE = 90^{\circ}$$
 and $\angle MYE = 90^{\circ} \Rightarrow \angle MYO = 90^{\circ}$

∵ RE || OM and EO is a transversal.

$$\therefore$$
 \angle MOE = \angle OER [alternate interior angles]

$$\Rightarrow \angle MOY = \angle REX$$

iv. Yes, Δ MYO $\cong \Delta$ RXE

In Δ MYO and Δ RXE

$$\angle$$
MOY = \angle REX [proved in (iii)]

$$\angle$$
MYO = \angle RXE [proved in (ii)]

$$\therefore \Delta MYO \cong \Delta RXE$$
[by AAS]

v. Yes,
$$MY = RX$$

Since, these are corresponding parts of congruent triangles.

36. We have given that principal (P)= ₹40000

Rate of interest (R) = 8% per annum

i. Compound interest for one year,

We know that,
$$A = P \Big(1 + \frac{R}{100} \Big)^n$$

,=
$$40000 \Big(1+rac{8}{100}\Big)^1[\because n=1yr]$$

$$=40000 \times \frac{108}{100}$$

Page 11 of 13

- \therefore Amount, A = 400 \times 108
- = ₹43200
- ∴ Compound interest, Cl = A P
- = ₹43200 ₹40000
- = ₹3200
- ii. Amount of 1^{st} year = Principal of Il^{nd} year
 - = ₹43200
- iii. Now, for Ilnd year,
 - Principal = ₹43200

Rate of interest, R= 8% per annum

Time,
$$n = 1 \text{ yr}$$

Amount for ll^{nd} year = 43200

$$= \left(1 + \frac{8}{100}\right)^{1}$$
$$= 43200 \times \frac{108}{100}$$

= ₹46656

Compound interest, Cl = A - P

- = ₹46656 ₹43200
- = ₹3456
- iv. Now, if period i.e. time (n) = 2 yr,

Principal = ₹ 40000

and rate (R) = 8% per annum

$$∴ A = P \left(1 + \frac{R}{100} \right)^n$$

$$⇒ A = 40000 \left(1 + \frac{8}{100} \right)^2$$

$$= 40000 \times \frac{108}{100} \times \frac{108}{100}$$

$$= ₹46656$$

Therefore the total Amount, A = ₹46656

37. Let the radius be 3x and height be 2x.

Volume of cylinder
$$=\pi r^2 h$$

$$19404 = \frac{22}{7}(3x)(3x)(2x)$$

$$19404 = \frac{(66x)(6x^2)}{7}$$

$$19404 \times 7 = 396x^3$$

$$x^3 = 343$$

$$x=\sqrt[3]{343}$$

$$x = 7cm$$

Therefore,

Radius =
$$3x = 3(7) = 21cm$$

Height =
$$2x = 2(7) = 14$$
cm

38. Actual length of the bacteria

$$\frac{\frac{5}{50000}cm}{=\frac{1}{10000}cm}.$$
= 10⁻⁴ cm

More the number of times a photograph of a bacteria is enlarged, more the length attained. So, the number of times a photograph of a bacteria is enlarged and the length attained are directly proportional to each other.

So,
$$\frac{x_1}{x_2} = \frac{x_2}{y_2}$$

 $\therefore \frac{50000}{5} = \frac{20000}{y_2}$

$$\therefore$$
 50000 y₂ = 5 × 20000

$$\therefore y_2 = rac{5 imes 20000}{50000}$$

$$\therefore$$
 $y_2 = 2$

Hence, its enlarged length would be 2 cm.

Page 12 of 13

39.
$$36x^2 - 12x + 1 - 25y^2 = (6x)^2 - 2 \times 6x \times 1 + 1^2 - (5y)^2$$

=
$$(6x - 1)^2 - (5y)^2$$
 Use $a^2 - b^2 = (a + b)(a - b)$

$$= \{(6x-1)-5y\}\{(6x-1)+5y\}$$

$$= (6x - 1 - 5y)(6x - 1 + 5y)$$

$$\therefore 36x^2 - 12x + 1 - 25y^2 = (6x - 5y - 1)(6x + 5y - 1)$$

- 40. After observing the graph carefully, it is clear that
 - a. The x-axis represents subjects and the y-axis represents the marks obtained by Sonia.
 - b. In Maths, she scored the highest in Test I.
 - c. In English and Hindi, she scored the least in Test II.
 - d. In Hindi and Maths, she scored the same marks in both tests.
 - e. She scored 6 marks in English in Test II.
 - f. Same performance in both tests by Sonia.
 - g. Test I in Maths, she scored full marks i.e. 10 marks.